Geospatial data and Scholia

Finn Årup Nielsen, Daniel Mietchen, Egon Willighagen

Cognitive Systems, DTU Compute, Technical University of Denmark; Data Science Institute, University of Virginia; Dept of Bioinformatics - BiGCaT, NUTRIM, Maastricht University

3 June 2018
How much geospatial data do we have?

5’855’337 Wikidata geocoordinate links according to the query:

```
SELECT ( COUNT(*) AS ?cnt )
WHERE { [] wdt : P625 [ ]. }
```

From Chinese village, Dutch roads, Danish restaurants, . . .

The numbers: around 48 million Wikidata items, over 5 milliard triples, over 13 million DOI links, around 39 thousand geolocatable topics of works with DOI:

```
SELECT (COUNT(*) AS ?count) WHERE { [] wdt:P356 [] ; wdt:P921 / wdt:P625 [] }
```
There are several applications using geospatial data from Wikidata.

Magnus Manske has produced *Reasonator* that displays a map for a specific Wikidata item and *Wikishootme* that shows a map with geolocatable Wikidata items missing an image (see screenshot).

You can also discover Wikidata items near your with the special URL https://www.wikidata.org/wiki/Special:Nearby in the MediaWiki software.
Scholia

Scholia is a webservice running from https://tools.wmflabs.org/scholia/

Display information from Wikidata about researchers, works and their citations, organizations, venues, events, topics, etc.

Panels for each Wikidata item constructed with calls to the Wikidata Query Service (WDQS), showing tables and plots such as bubble charts and line plot as well as OpenStreetMap-based maps.
Geospatial data and Scholia

Geospatial data with Scholia: topic

Maps established with simple queries to WDQS.

Find works about a topic (here Mayaro virus) with a SPARQL path query:

```
?work wdt:P921 /
  ( wdt:P31*/wdt:P279* |
    wdt:P361+ |
    wdt:P1269+ )
wd:Q18863953 .
```

Identify co-occurring topic that is geo-locatable.

```
```
Geospatial data and Scholia

Geospatial data with Scholia: author

Author aspect: /scho- lia/author/Q20980928

With node coloring controlled by the type of property.
New Scholia aspects: location and country
Geospatial data and Scholia

Geospatial data with Scholia: location

Scholia location aspect for a Cretian hotel:
/location/Q47259960

SPARQL query with the distance function called geof:distance showing nearby academic institutions.

Other panel: Nearby locations as topics in works. Identifies, e.g., *Tomb Robbing and the Transformation of Social Memory in Roman Knossos* (Grigoropulou, 2004) as an article with a nearby topic.
Geospatial data and Scholia

Geospatial data with Scholia: location

SPARQL query for identifying nearby academic institutions

Academic institution
VALUES ?university { wd:Q3918 wd:Q1371037 wd:Q7315155
 wd:Q31855 }
...

Find individual universities and departments
and the geocoordinate
?organization wdt:P625 ?other_geo .
...

Compute distance between academic institution
and the query location
BIND(geof:distance(?other_geo, ?geo) AS ?distance)
FILTER(?distance < 250)
...
ORDER BY ?distance
Countries in Scholia

Map in Scholia with international collaborators of authors based in the Netherlands: /scholia/country/Q55

Other map panels for the country aspect display narrative locations within works and location as topics in works.
User stories
User story: Finnish machine learning

You are to review research applications from Finland about machine learning and related research fields. You are based outside Finland and would like to get an overview of Finnish researchers and research organizations in that research area, their works as well as their collaboration and citation patterns.
User story: Finnish machine learning

One of the panels on the Finnish machine learning country–topic aspect page with display of the co-author graph.

Using item links between researchers, affiliation and country to identify Finnish researchers with no need for query on geocoordinate data.

Combination of country and topic: /scholia/country/Q33/topic/Q2539
User story: Wikipedia researchers in Tübingen

You are a researcher interested in Wikipedia research and planning a visit to Tübingen where you would like to meet other Wikipedia researchers.
User story: Wikipedia researchers in Tübingen

Combination of location and topic: /scholia/location/Q3806/topic/Q52.
(SUM(?topic_score) * MAX(?inverse_distance) AS ?score) ...

?work wdt:P921 / wdt:P279* wd:Q52 . BIND(3 AS ?topic_score)
UNION { ?author wdt:P101 wd:Q52 . BIND(20 AS ?topic_score) }
User story: conference hunter

You are going to The Web Conference in April 2018 in Lyon. You want to know if there is any other relevant scientific meeting in the local area at that time, preferably just before or just after the conference.
User story: conference hunter

Related events panel for *The Web Conference 2018* in Scholia.

<table>
<thead>
<tr>
<th>Score</th>
<th>Time score</th>
<th>Location score</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000.0</td>
<td>10</td>
<td>200.0</td>
<td>Semantics, Analytics, Visualisation: Enhancing Scholarly Dissemination Workshop co-located with The Web Conference 2018</td>
</tr>
<tr>
<td>2000.0</td>
<td>10</td>
<td>200.0</td>
<td>Wiki Workshop 2018</td>
</tr>
<tr>
<td>0.48289635681516646</td>
<td>2</td>
<td>0.24144817840758323</td>
<td>Coding da Vinci Ost 2018</td>
</tr>
<tr>
<td>0.3528879254047528</td>
<td>0.7547169811320754717</td>
<td>0.37969864810615994</td>
<td>Wikimedia Hackathon 2018</td>
</tr>
<tr>
<td>0.2419491754542301</td>
<td>0.85106382978723404255</td>
<td>0.28429028115872035</td>
<td>4th Dutch Bioinformatics & Systems Biology Conference</td>
</tr>
<tr>
<td>0.22856288438578842</td>
<td>6.6666666666666666667</td>
<td>0.03428443265786262</td>
<td>CHI 2018</td>
</tr>
<tr>
<td>0.15614832986186872</td>
<td>0.56330828169014084507</td>
<td>0.27716328550481695</td>
<td>11th International Conference on Chemical Structures</td>
</tr>
<tr>
<td>0.1395750399245413</td>
<td>0.22857142857142857143</td>
<td>0.2058556595973786</td>
<td>1st Workshop on Quality of Open Data</td>
</tr>
<tr>
<td>0.10699910223060025</td>
<td>1.3333333333333333333</td>
<td>0.08024932667295019</td>
<td>21st International Conference on Artificial Intelligence and Statistics</td>
</tr>
<tr>
<td>0.09521655169911777</td>
<td>0.21621621621621621622</td>
<td>0.44037655160841965</td>
<td>P1Dapalooza 2018</td>
</tr>
</tbody>
</table>
User story: conference hunter

Event aspect for The Web Conference 2018: /scholia/event/Q48910401 where the SPARQL query combines inverse distance and inverse time separation:

BIND(20 / (1 + ABS(?day - ?day0)) AS ?time_score_)
...

inverse distance
BIND((200 / (1 + geof:distance(?geo, ?geo0))) AS ?inverse_distance)
...
BIND((?time_score_ * ?location_score_) AS ?score_)
...
ORDER BY DESC(?score)
Summary

Large amount of geospatial data in Wikidata, including geospatial data tied to scientific items (articles, researchers, organizations).

...and continuous expansion of the data.

WDQS makes it easy to create maps of the data in Wikidata.

Scholia uses the capabilities of WDQS to render maps and compute distances for a range of different scholar-associated data.
References

Copyright and license

OpenStreetMap maps are Map © OpenStreetMap contributors. CC BY-SA 2.0.

Wikidata logo by Arun Ganesh (Planemad). It is a trademark of the Wikimedia Foundation.

Wikishootme is the work of Magnus Manske.